7«¢¢ Prescribed Burning

Prescribed burning for hazard reduction has been carried out in
indigenous forests 4n Western Australia for wmany years, The
Forests Department endeadvour to burn the entire forested estate
every four to eight years. Burning is prescribed when the fuel
Load reaches 15 tonnes per hectare $n jarrah forest types, asnd six
tonnes per hectare in atl other forest types,

The tomputer program, Smoke Advisory Service, is run f{moediately
prior to all proposed prescribed burns to ascertain whether a
smoke hazard could be caused to atrports or weajor centres of
population. Sample output from this program is presented in Figure
é., 1f an unacceptable risk of smoke hazard {3 indicated by the

program, the fire may be deferred until more favourable conditions
QCCUr,

The fires are ignited using incendaries of potasstum permanganate
dropped from adircraft. The Forests Department hires up to two
Beitten-Norman Islancer adrcraft for this purpose., One of these
afrcraft 4s also used far dieback photography during the autumn,

Frescribed burning 1s beginning te play a new role in forest
management. In addition to hazard reduction, prescribed burning is
being used for understorey modification to control the spread of
Psecinnamomi.

8« The Growth Model

Belse Introduction

The principal objective of the idnterchange wass to develop
flexible growth model for netural mixed ape stands, which could be
apptied to indigencus forest stands in Queenstand. Pecause of the
extensive data base of white cypress pine (Catiitris columellaris
FeMuell) held by the forest Research B8Branch of the Queensiand
Departeent of Forestry, and the relatively simplistic silviculture
ang stand dynamics of this spectes, it was decided to deveiop the
model for this species, and later adapt §t for other forest types
tn Queenslanc.

The model 43 an elaboration of one devetoped by the Inventory and
Pltanning Section of the Fforests Department for P.radiats and
P.pinaster plantations in wWestern Australia. The V.A. ptantation
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model ¥s highly successful and 1s an integral part of the POTS
system,

The model 4s written in ANSI standard FORTRAN and has been run
without mogfficationy, on C.DeCe Cyber and UNIVAC computers, It is
a collection of FORTRAN subroutines which simulate one year of
growth in the stand each time the subroutine GROW is invoked. NoO
input or output is performed, as the user is expected to supply
interfacing routines to present the information penerated in the
form that he regquires.

Nonlinear equations are extensively wused in the modetl, These
equations are generally simple and logical, but the derivation may
be quite complex. The rationale for this §s to ensure that all
functions wused 4in the model have a sound biological basis, Thus
pre=-determined nontinear functions sre fitted to the data, instead
of using Llinear regression techniques to derive an equation of
best fits This technique is expected to give more reliable results
for extreme values, where Little datas exists.

The following discussion develops the philosophy and rationale of
the modeles NO attempt is made to give @» wuser”s guide to the
subroutine package, This function will be provided by separate
documentation when validation of the model has been compieted,

Belo Overview

The model is designed as a flexible, robust model requirting only
stand parameters routinely measured during taventory.

BaZ2eln Stand Variables

The primary stand varisbles derived directly from inventory are
the number of trees per hectare within S c¢ca dbhob classes, and the
site index of the stand.

The secondary stand vartables are those derfived by the model, from
the primary varfables, and include the parameters of the diameter
distribution, the mean dbhob for each class, the basal area within
each class and the stand basal area over bark.

The diameter distribution is derived from the stand table as
illustrated in Figure 7. The distribution §s continuous and smooth
at every point in the renge of the diameters, and {t conserves
relative frequencies in every diameter class. The distribution is
totally flexible and there 13 no requirement that 9t should

¢
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Figure 7

Diameter Distributions derived from Stand Tables
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approximate de Liocourt”s reverse=J) distribution for mixed aged
stands (Carron,1968), the normal distribution for even aged
stande, or any other distribution, The class mean dismeters and
basal areas are computed by integrating the distribution over the
appropriate intervals.

8.2+2+. Factors Influencing Growth

The model considers three factors which contribute to determining
the growth of an individual tree in the stand. These include the

site index and basal area of the stand, and the potential maximunm
growth of an open grown or dominant tree,

Site index is definec for white <¢ypress pine by an asymptotic
diameter height relationship, with the index diameter at 25 cm
dbhob (Queensland Department of Forestry, 1981).

The basal area increment of the stand is determined as a2 function
of standing basal 4area and site index. This {ncrement is
proportioned to each diameter class according to fts contribution
to the stand basal area, subject to the criterion that the class
mean increment cannot exceed the potential wmaximum growth rate.

The potential maximum growth rate {4s determined by a simitar
tunction of obhob and site index.

84243 The Basal Area and Diameter Increment Functions

The functicns for both basel ares increment and dismeter growth
are similar., They are both a direct result of an assumption due
to von Bertalanfty (1951), that the growth rate o1t an organise is
propertional to the excess of the energy absorbed by the organisa
over the energy reguired to maintasin 1ts Live tissues,

Both functions are asymptotic, the diameter function asysptotic to
a constant, and the asymptote for basal area dependent upon site
index, The effect of site dndex on basal area increment is
indicated in Figure B+ The cdtameter growth trengd shown in Figure
¢ does not provide a realistic 4ilustration of the diameter growth
of trees in a stand as the effects of competition mey depress the
diameter increment during part of its Life. Competition induced
reduction in diameter dncrement 143 dntroduced into the model
through the basal ares fncrement function.,

$ite index determines the basal area asymptote, and determines the
rate 2t which a tree diameter approaches its asynptote.
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Figure ©

Diameter Increment of Dominant Trees
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Figure 10
The Distribution of Diameter Increments

For Mean Increments of 1, 2 and 3 cm,
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Be2ethe The Distribution of Diameter lncrements

The increment assigned to a particular tree within 2 class 4s the
random welbull wvariate with mean egual to the class wmeasn
increments The wWeibull distributfon ts defined between zerao and
intinity, andg thus explticitly excludes the possibility of negative
increments. The distribution is characterized by two parameters,
one of which can be chosen to ensure that the distribution is
almost symmetrical and approaches the normal distribution. The
second parameter 45 determined by the requirerent that the
distribution mean {s equal to the class mean fncrement,

The distributions for a range of class mesn increments are given
in Figure 10, 1t should be noted that the varisnce of the
distribution dncreases as the mean increases., This s consistent
with the hetercscedastic distribution commonly observed for
increment data.

8.2.5. Mortality

Individual trees attaining extremely small dismeter increments are
assumed to dies The probability of mortality in any stem class s
computed by integrating the area under the Weibull distributton
between 2zero and the critical diameter increment for survival.
This critical diameter increment increases stightty for (arger
trees,

8.246s Recruitment

Estimates of advance growth are computed as & function of basal
area. This advance growth $s projected for a number of years
before the iJndividual stems are recrufted into the smallest stem
class. Advance growth is assumed to suffer the same vrate of
mortality as the smallest stem class,

8.2.7Ts Growth Simulation

Growth of the stand is simulated by the promotion of trees through
diameter classes. The proportion of trees promoted from any class
4s expressed 2s » probability of movement, computed from the
parsmeters of the diameter distribution and the parameters of the
increment distribution.

23
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8.2+, Implementation

The model is implemented as a coltection of FORTRAN routinese The
organfzation of these routines is indicated tn Figure 11, A beriet
summary of each routine follows.

GROW ¥s the wusual entry {into the model for wusers. 1t
initjalizes parameters as required, and invokes other
routines to project the stand through one year of growth.

INCD computes the mean diameter increments for mach stem class
by (1) computing the stand basal area increment, (2)
proportioning that dncrement according to the «class
contribution to stand basal area, and (3) checking that
the resulting class mean dfameter increment does not
exceed the potential maximum diameter increment.

DPEATHS ctomputes the probability of wmortatity in each stem
class.,

RECRUT computes recruitment into the smallest stem classe.

LIKELY generates a distribution of dismeter idncrements for
each c¢lass, and applies them to the current diameter
distribution to compute probabilities of movement.

MOVES generates the new stand table by prosoting trees to the
next diameter cleacss,

SPLINE cCoOmputes the parameters of the new dismeter
distributicon.

MEAND computes the new clLass mean diameters.
MEANE computes the new class mean basal areas.
Some other routines are avaliable to the user :
MEANH computes the mean hefight of the trees 4n each class.
MEANY computes the mean volume in each class.,

LIMITS computes the number, basal area and voltume of all stems
between any two specified dbhob Llimitse.
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Figure 11
Generalized Flow Chart of Cypress Model
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8.3, Potential Diameter Increment

In the devetopment of his growth wmodel, wvon Bertalanffy (1951)
assumed that the rate of growth of the biomass of an organism is
proportional to the excess of energy asbsorbed by the organism over
the energy required to mafntatn +{ts Live tissues, For simple
organisas, von Bertalanffy sssuees that the energy absorbed s
proportionat to the surface area, and the energy reauired to
vaintain the live tissues is proportional to the biomass volume of
the organism., Campbetl (1981) has generalized these assumptions
and extended the method for application to tree pgrowth,

The rate of growth of the biomass volume of a tree is expressed as

dM/ot = UaPuslsS = vl (1)
where y and v are constants of proportion,

Ls denotes Leaf surface srea,

M denotes biomass volume of the tree, and

e denotes photosynthetic rate, 0 <= p <= 1,

In this modely this equation witl only be applied to stems which

are assueed to recedve full sunlighty and for these individuals, P
T T,

Substituting the assumed sllometric relationships

b
™ = a.D

d
Les = ¢.0D
where b 1s cdiameter (dbhob), the gifferential equation (1) becomes

{(d=b+1)
db/fot = (uecd)/Caosb) o O - (v/b).D (2)

A diameter growth function is derived by the integration of (2)
over the time perfod (t0,t), where t is an arbitrary age snd t0 is
the age at which dbhob (0) §s zero:

{1/r)
D = As{1 = EXP{=K(t=t0)]) 3
(1/r)
where A= {({ude)/lv,ea)d)
s the asymptotic diameter of free growing trees,

e = {(b=d)

and K = vol(b=d)/b are parasmeters.
2s
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The parameter K §s assumed to be related to site index,

K = p + .51
$0 that trees growing on superior sfites approach the asymptotic
diameter more rapidly thanm those on inferfor sites.,

The differential form of (3) provides an estimate of the potential
diameter increment of trees in & dismeter class for the current
year, assuming no competfition:

r
1(3) = db/dt = {(p+geSIPoDCi)/r) . L{A/D(4)) =1] C4)

where 0(4) is the mean dismeter 4n the i=th closs;
I{i) is the potential clLass mean increment, and
SI1 %t the site index of the stand.

Buebhe Basal Area Increment

A similar argument may be applied to basal ares, f all 0 in
equation (4) are replaced with BA. However, observing that 3n
biological systems, & greater resource SUpports s Larger
populatton, we also replace A 4n equation (&) wufith f(S1), an
unspecified function fn site fndex, Thus we have

r
BAI = ({(p+Q.SI).BA/rY .L{f(S1)/BA) =1) (5)

where Al is the basal area increment, and
BA 14s the stand pasal area,

Regresston analysis suggests that q=0 and f(SI)=g+h.S1 far the

data set studied during the dnterchanges Then equation (5)
becomes:

r
BAI = (p.BA/r) ({{g+h.SI)/BA} =1] (6)

8.5, Class Meanrn Diameter Increment

The actusl class mean fncrement, allowing for competition, may be
substanttally ltess than the potential dncrement opredicted by
equation (&), To determine the actual class wmean increment, the
total basal area jncrement of the stand from equatien (&) s
proportioned to each of the <classes according to that class”s
contribution to the stand basal area., Should this proportion
constitute 8 diameter increment greater than the potential

2é



increment indicated by equation (&), the increment i35 reduced

accordinglyy and the surplus basalt area increment 1is distributed
among the other classes,

This ts achieved by computing

PICY) = MINL ICi), D(BAI".,BA(1)/SBA"} ] (7>
where DI{i) {s the actual ¢class wean diameter increment in
class {;

I(i) 14s the potential increment from equation (&)

0{b} 1{s the class mean dismeter increment corresponding
to a basal area fncrement b, in that class;

BAI” s the bassl ares dncrement from eaquation (6),
adjusted for the increment {n classes (%),
j=1"‘1’lcgﬂ;

BA(i) is the basal area in the i=-th class;

SBA” 1s stand basal ares sdjusted for the besal area of
classes (J), j=i¢+T,0sueNe 1e
SBA'*BA(1)4BA(2)*...+BA(i).

8s464 Probability of Movement

The dertvation of eaquations & to 11 below is taken from Campbell”s
(1981) unpublished work, and is reproduced here for the benefit of
eueensland readers.,

8.6.9. Theoretical Background

The probability that a tree in the i=-th diameter class moves into
the (i+1)th class after one year of growth can be expressed as s
function of the class mean diawmeter increment, the class interval
and the parameters of the distribution of diameters and
increments,

Let o(y) represent a probabitity distribution defined on the
interval (O,R) such that

R
I gl{yd.dy = G(R) = 13
0

and Let m denate the k-th moment of g{y) about the origin
k
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R
k
[y oglydedy = m
k
1]

Then integrating by parts

R
k k=1
] = R +G6(R) = k' y +6Cy),dy
k
H

and consequently

R
k=1 k k
l ¥ aG(Y).dy 2 {R LG(RY = m }/k = (& - m )k (&)
k k
Q

Now suppose that gly) is » distribution defined between 2ero and
infinity, Then equation (8) estimates the value of the integral
with negligible error provided that R is chosen Large enoughe.

B.602s Derivation

The probability p”(1) that & tree dn the i-th diameter class
remains in that class after one year of growth {s given by:

ir+L iR*L=-D
D’(i) = (1/X% )' f (o), ' g (y).dy.db (%)
] ] i
(i=1)R+L 1]

where X is the relative frequency in the i-th class;

R Js the class interval; ¢
L 4s the Lower Limit of the first class containing trees; i
D 4s & random tree diameter; !

y is & random diameter increment;
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f 4s the distribution of diameters jn the i-th class;

g is the distribution of jncrements in the i=th classa.
1

The Limits of the leftmost integral are the upper and Lower bounds
of the dJ=th diameter class., The Llimits of the rightmost integral
represent the range of permaissible idncrements fTor a tree of
exactly D centimetres under the conditions that it remains in the
i=th class after growths Therefore the expressfion for p“(4) is the
sum, over all permissible values of D, 0f the probability that a
tree is in, and remains tn the 4=-th class, and 43s exactly D
centimetres diameter before growth.

The diameter distribution f({) 43 identified with the aguadratic
function describing the diameter distribution:

2
f = (1/BN)XL A CCO=L)/RNY + B [CD=LY/RN]I + € )
| % i i
such that
(i=91)/N < (D=L)/RN <= {/N

1R+L

{ f (D).db = X
i f
(i=1)R+L

where N 4s the number of diameter classes containing trees and the
renaining symbols have been defined previousiy.

Impitementing the rightmost integral detfined in (9) and introducing
the transformation of variables zsiR+L-D, p"(4) is expressed:

R
Fd
P = 1/{X «ReN) | (A [CiR=2)/RNI 4B L[(iR=2)/RN] +C X,6 (2).dz 1O}
i | ] } 5 i
0

where 6(i) 4s the cumulative distribution of fincrements 4n the
t-th class,

The dntegral (10) 4s evaluated vusing the relations (R), The
evaluation may be exact for certain choices of g(i) but, 4n
generaly, is an eapproximation, It was stated above that the
approximation leads to negligible error provided that R s chosen
Large enough, R i3 now identified with the dtameter class
interval, and this condition can be interpreted as requiring that

9
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the dismeter class dinterval should be Large relatjve to the
expected i{ncrements,

The substitution of the relations (8) dinto the dintegral (10)
yields: )

2 3 3
P7CEY = (17X ) {A (R =m3)/ (3R «N )
i i

2 2 2
= L 2A (A1/N)4B Jo(R «m2)/(2.R «N )
i ¥

2
+ L A Gi/N) +B C(4/N)+C Jo(R=m1)/(R.N) 3}
i i 1

Provided that the class interval ¥s set large enough to ensure
that trees may not eove through more than one diameter class in
one period of growth then the probability (p(4)) that s tree in
the i-th ¢class moves dnto the next clLass after growth s @

edi)

1t = p”(§)

1 3
Ci/7X ) € A oﬂ!/(SvR oN )
i 3

2 2
- EZA .(‘U'N)*B ]O.ZI(ZOR «N )
] 1
2

+ CA (4/7H) +B (4/N)+C T.m1/(R.N) ) (11
3 3 j

The distribution of dncrements (g(§)) 4s d{dentified with the
wWeibull distribution with parameters fixed as follows:

c=-1 C
g(i) = (ec/b(3))elyltb(i)) +EXPL =(y/b(i)) 1 (120

c = 3.6
(i) = I(4)/76AMMA(T1/c+1) = 1,1098,1(¢4)

where I({i) is the mean increment for the j-th class computed from
eaquation (7), and GAMMMA represents the gamma function.

3¢




with this <choice of parsseters, the distribution of increments
(g(i)) has the following properties:

1¢ 1t is almost symmetrical (for ¢ = 3,6);

2e Its mean (m1) is equal to the class mean diameter
increment (I(1));

[4
3. w2 = I(%) . 1.095%;

3
be % = I1(4) . 1.2844,

8.643s Compariscon with Davis” Formula

Methods wmore commonly wused for promoting trees through ciameter
classes are discussed by Davis (1966)s The formulse recommended by
bavis assume a uniform distribution of trees within diameter
classes. In order to compare probabilities of movement predfcted
by Davis” and the above formulae, it 4s necessary to fix the
values of some parapeters in (11):

K =1, X = 1, A z P = (, and € = 1.
i 1 i 1

Wwhen these values are substituted {n (11), the expression
simplifies to:

p{i) = m1/R = I(i)/R

which 45 the <classical formuls recommended by Oavis, Thus

equation (11) may be regarcded a3 a generatlization of Davis”
formula,

Table 3 opresents a comparison betueen the probabilities produced
by (11) against the corresponding probabiiities preduced by Davis”
formulas The catculations refer to a stand in which all the trees
are concentrated within a singte S cm dbhob class,
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Table 3,

Mean Computed Probabitities X pifference
Increment Davis” Ean(11) (a=bl)/b
(a) (b)
1 ¢m D.125 0.046 +17%1.7%
< ¢m 0.250 Ue165 +51.5%
I cm G.37% 0.327 +14.86%
4 ¢em 0.500 0.500 0.0

Be7¢ Promotion inte the Next Class

Let the wvectars n and n” represent respectively the stand table
before and after growth. Then
n’ = P(j.k).n

where P(jy,k) §s the stochestic matrix with entries defined as
follows:

P(i,14) = {1 = p(4)

PCi+1,1) = p(i)

PCj, 42 = 0y (all j except j=4 and §=3+41), and

p€i) is the probability returned be equation (11).

After executing the operations describeg above,y the largest and
smaliest dfameter classes are tested to confirm that they contain
more than a specified small proportion of the total stocking, If
either of the classes contains less than that proportion, f{t s
eliminated by promoting or demoting trees into a neighbouring
class. This prevents unnecessary fragmentation of the stand,

8.8+ Mortality

The mortality function assumes that if the increment of any tree

over & period is less than a certain critfcal increment defined by
a function

M= a + b,D (13

then that tree will die. Equatiaon (13) requires that for a Llarger

tree to survive, it aust achieve o higher increment than s smaller
tree,

The probability of mortality occurring within any class +s
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determined as the probabitity of increments less than the critical
increment, M, occurring within that cltass. This is computed from
the integral of the Weibull distribution:

M
c=1 ¢
I (e/bCi)Yely/BCd)) JEXPL=(y/b({)) J.dy

0

o
L]

c M
[ <EXPI=-(y/B(3)) ]

0

<
=1 - EXPL=-(M/D(3)) ]

where ¢ and b(3) are defined for (12) above,

8.9, Recruitment

Recruitment is predicted by determining regeneration as a function
in stand basal area and site Jndex, and projecting this
regeneration for a number of years before recruiting it into the
smallest diameter class.

For the data of this study, site index was found to contribute
tittle, and regeneration is determined as

R = EXPL a + b.SBA ] -~ 1

This regeneration $s projected for a number of years untfl it
reaches breast hefght 1.3 m), when 4t 4s recruited idnto the
smallest class,s Each year 4t 13 subjected to the same probability
of mortality as s computed for the smallest diameter <class
containing trees.,

8.10, Stand Diameter Distributfon

The stand table, which 1s input as a histogram, is transformed to
a quadratic spline function which s continuous and smooth at
every point in 1{its range and which conserves the relative
freauency in every dismeter class interval (Campbell, 1981),

The spline function is a set of quadratic functions of the form:




‘
¥
P4
f (a) = A x + P x + ( [LCe=1)/IN < x <= §/N]
i i i i .
where X = (p - D JI(RWN) = relative diameter
min
N = the number of diameter classes spanned by the

distribution

1} = tree dbhob

o = the lower Limit of the Least class
ain

R = class interval

A 4 B, C are parameters to be determined,
1 i 1

Let X(3) denote the relative frequency of trees in the $=th class
and impose the conditions stated above:

1e £ (F/0) = § (i/N) {continuous)
| 1+1
2 17 (4IN) = €7 (1/N} (smooth)
§ i+
t/N
t 3. 1 f (x)edx = X(§) C(conserve retative frequencies)
i
(i=1)/N i

These three condittons dJmply 3IN=-2 condéitions. Two additional
conditions are required to fully specify the spline functionse.

4o £ (0) =0
1

S¢e £ (1) = @
N
are convienient choices which allow simplifications in detersining
the parameters of the spline function using a method due to
Canpbell (1981). However, it is necessary to create & dummpy class

with dbhob Lless tham zero 1f there are trees in the 0=5 ¢» dbhob
class.,
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To determine the parasmeters,; Let PC1) and Q(i) denote sequences

defined recursively as follows:

(1) = 1
ety = 1
PCE+1) = 2,0(04) + PCY)
ACi+1) = a(i) + P(i+1)
$0 thate
P(Y) = (1’3'11|‘1,153'000)
Q1) = (1,‘;15'56,209‘.0')
Set:
A =0
i
2 -N i=1
B = (&N ZQ(N}) > (~1) XTI PCN=1+1)
i -1
¢ =0
i

The parameters A , 8 , C (4 = 1, N) are determnined by suctessive

] § i
applications of the reiations:
2
A s A o+ IN {XCi+1) = Y(i+1))
141 1
2
8 =B = 2N +34{X(i41) = Y(§+1)>
je1 i
2
c = € + NeJ3i {X{4+41) = ¥Y(i+1))
i+1 i

Y(i+1)> {s the dintegral of the 4i=th function
interval:

3s

over the (i+1)th




(i+1)/N

Y(3i+1) = | f (x).dx
i
i/N

303 2 2
= A [C441) =5 /3N + B [(§+1) =1 D/2N + € /N
3 ! 3

The function generated by this procedure 1s not ailways a
distribution as negative values may occur within its range. 14
negative wvalues are detected within any class, a Linear or
constant function may be substituted for the oauadratic spline
within that class,

This problem only arises when the crelative trequency within 3
class is small relative to adjacent classes. Therefore, the
inconsistencies introduced by substituting the Linear function are
negligible,

8417, Class Mean Diameters

The mean diameter of trees in the i=-th diameter class fs3:
i/N

L+ RoeN/XCT) | xef (x)odx (14)
i
(i=1)/N

2
Wwhere f (x) A x + B x + (C i3 the diameter distribution
1 | 1 1

(O=L)/(R«N) = relative diameter

tree dbhob

lower {imit of Least ctass

class interval

number of classes containing trees

retative frequency of trees in the i=th class.

»EDMCOM

1)

The overall stand diameter can be obtained by sueming the product
of the relative frequencies and class mean diameters for all
classes containing trees.
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Bet2e Class Mean Bassl Area

The basal area in any dbhob class is

i/N
: F
@ = T.PI/4D000. | (L * XxeReN) f (x)odx (15)
i 1
C4=1)/N
2
where f (x) = A x 4+ 8 x + C
i i i $
X = (D=L)/(R.N) = relative diameter
T = total stacking

Dy Ly N and R as previously defétned for (14).
8.13, Class Mean Heights
Mean heights for each diameter ciass are computed from Henry”s

Mitscherlich equation, ustng class mean diameter and site index.

(pCixr25)
H(3) = k = (k=13 {(Kk=S1)/(k=1,3))

where k = a + beS1, with a and b constants.

The index dbhob of the curve 48 25 cmy and thus the height of a 25
¢cm dbbhob tree {15 equal te the site iJindex. This curve is
illustrated in Figure 12.

8,14, Class Pean Volumes
Volumes are computed using an equation developed by N.B.Henry
(Gueensland Department of Forestey, 1979):

V S 8 * Belh + CoH + dahoH

where A is the basal area of the treey, and H 1s the average height
of & 25 ¢m dbhob tree, that is, the site index of the stand.

This ecguation may also be written

V = 3.5 + DeA”™ 4+ Co5.H + d,A"H (1&)
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where A is the basal area, and S {s the number of trees, either
between any specified limits, or in the stand,

B.15. Proportion of Stand between Specified Limits

It is often required to determine the stocking and basal areas
between specified Limits not aligned with the diameter classes.
For example, a commonly used dbhob Llimit used in cypress pine is
19 ¢m dbhob.

The number of stems between any specified Limits may be determined
by

3 k1 F'4 2
S = T.{A Cu =0 )3 + B (u =10b )2 +C Cu =10b )
i 1 1 1 1 1 + 4 i
where T s total stocking

A, B, C are parameters of the diameter distribution

{ ] ]
U = (D = LYJC(R,N)

1 u
B = (D = LY/{(R,N)

i t

b and & are the upper and lower dbhob (imits
u |

respectively of either the class 1,
orf of the specified range.

Basal areas between the specified Llimits way be determined by
application of equation (15), amd veolumes aay Le computed by
substituting the numbers and basal areas determined above, into
equation (14).

8.164 Further Refitnement

The model has been developed to a workable state, and shows
promise in giving reljable results. However, 3 number of untested
assumptions were made {n its development, and some detficiencies
were evident §n the data base. The following discussion highlights
the deficiencies and the assumptions which require further
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development.
8e16.1, Site Index

Ne Bs Henry“s Mitscheriich site index equation shows greagt promise
as a descriptor of increment in cypress stands. However, there is
some evidence that the estimate of site index may be affected by
stand treatment and logging operations. Further work needs to be
carried out to determine methods of calculating an estimate of
site index free from such varfation.

8.14.2. Basal Area Increment

Because of defictencies in the data base, the upper ssymptote far
the basal ares function is poorly defined, and this may have
profound effects when modelling extreme silvicultural treatments.
Data from plots of higher basal asress than were available at the
time of the interchange have been tocated, and a revised function
is being computed.

84t6e3. Diameter Growth

Although the asymptotic diameter for cypress has been estimated at
100 ¢my no measurements of $ncrements exist for stems greater than
55 e¢m dbhobe To redress this deficiency, stem anatysis of some
larger cypress stems is beéng carrfed out In an attempt to secure
further dats. If this method shous promise, further stem analyses
will be performed and » revised equation will be computed.

Balbedy Mmortality

The mortality functioen wused 1n the model was concedved and
developed by the author. Although it appesrs to work well, it 1s
difficult to determine the crftical d$ncrements, below which
mortality occurss The parameters 4n the function were +tnitiatly
determined by an educated guess, and refined by trisl and error.

A mortality function advocated by Buchman (1979) overcomes these
problems, and coutd be {incorporated iJnto the modet. Buchman’s
function should be evaluated for cypress pine, and if suitable,
should be fncluded 4n the aodele.
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8+146.5, PRecruitment

The recruftment functicon 1n the model s based on very Little
data, and the treatment of advance growth is, at best, conjecture.
Observations end messurements should be made on the behavior of
cypress seedlings to 1.3 metres height, so that this function can
be improved as necessary.

841606s ODistribution of Increment

Further work needs to be carried out to verify the assumption that
the fraction of basal area fncrement in any diameter class is

directly proportional to the fraction of the stand bassl area in
that class.

Be16e7Ts OQOther Components of the Stand

The model was developed for stands which are esgentially pure
cypress. The effect of other species 4n the stand should be
guantified, so the the model can be extended to stands with a
Larger component of other species.

B+17+ 1Implications of the Model

Analysis of silvicultural options for cypress pine has not vyet
been perfermed, $0 no recommendations for the management of the
rescurce <¢an be wmade. However, some fimportant observations
regarding the data base should be aade,

Although the Forest Research Branch holds an encrmous dats base
for cypress pine, much Larger than 4s required for effective
analysisy, the data §s concentrated intc & small range of stand
structures. There is Littie dats for plots having high basal
areasy, few plots with sufficfently low stocking to aliow growth
without competition, and few plots where competition {induced
mortality is sllowed to menifest {tself,

It an effective model s to be developed, which will enable ail
silvicultural possipilities to be exptored adequately, these
extreme situatfons need to be dncluded 4n the cata base. The
Forest Research Branch shouloc endesvour to redress this d{pbalance
tn the data base, not only for cypress pine, but for all forest
types of commercial interest,
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9« Benefits of the Interchange sccruing to WeAe

buring the interchange, many officers of the Forests Department
debated with the author, differences in poticy and practice
between the Forests bDepartment of Western Australis and the
Queensiand Department of Forestry., OFf particular interest to many
of the staff was the Forester Tenure system recently proposed 1in
Gueensland.

The extension officer of the Forests Department expressed
particular interest in the successful Forest Open Days which have
been held 1n Queensland for some years. As 8 direct result of the
discussions held during the interchange, the Forests ODepartment
intend to hold their first Forest Open Say later this year,
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